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Presentation Outline

• Project Overview

• Carbon Sequestration in Fractured Basalts

• Research Approach

• Technical Status

– Carbonate mineral formation in basalt fractures

– Reactions of basalts with flowing CO2-rich solutions

– In situ solid-state 13C NMR tool

• Summary and Opportunities
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Benefit to the Program 
• Program Goals Addressed

– Improve reservoir storage efficiency while ensuring 

containment effectiveness.

– Support ability to predict CO2 storage capacity in 

geologic formations within ± 30 percent.

• Project Benefits

– Generate datasets for evaluating the efficiency of 

carbon sequestration in fractured basalts.

– Determine the extent to which mineral carbonation 

may either impede or enhance flow.

– Develop the experimental infrastructure for evaluating 

CO2 behavior in fractured materials.
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Project Overview:  
Goals and Objectives

Overarching Project Objective:  advance scientific and 

technical understanding of the impact of fracture 

microstructure on the flow and mineralization of CO2 injected 

in fractured basalt.
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Project Overview:  
Goals and Objectives

• Budget Period II.  Evaluation of Static Conditions and 

Development of Flow-through Capabilities
– Evaluate the effects of basalt composition and fracture properties on 

the extent and mechanisms of carbon sequestration in diffusion-

limited zones.

– Quantify the extent to which confining pressure controls the propagation of 

fractures in basalts upon reaction with CO2.  

– Create data packages that can be used for model development.

– Develop laboratory-scale equipment for NMR and CT of pressurized 

systems with advective flow.
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Project Overview:  
Goals and Objectives

• Budget Period III.  Evaluation of Fractured Basalts with 

Flow of CO2-Rich Fluids
– Examine the impacts of precipitation and fracture development on the 

permeability of fractured basalt to CO2-rich fluids.

– Estimate the storage capacity of fractured basalts as a function of 

mineral content and fracture structure, and quantify storage by different 

mechanisms. 

– Demonstrate the application of advanced NMR and CT tools to 

fractured basalts with flow.

– Develop data packages that can be used for reactive transport model 

development.



Sequestration in Mafic Formations

• Mafic (Fe- and Mg-rich) rocks are formations with high mineral trapping capacity.

• Continued fracturing of the rock may be promoted by temperature and volume 

changes from reactions.

• Also applicable to ex situ mineral carbonation in engineered reactors.

Carbonate precipitates on basalts after 854 days of 

reaction at 103 bar CO2 and 100° C

Schaef et al., Int. J. Greenhouse Gas Cont., 2010
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Chemistry of Mineral Trapping

CO2(scf) + H2O = 2H+ + CO3
2-

Mg2SiO4(s) + 4H+ = 2Mg2+ + H4SiO4

Fe2SiO4(s) + 4H+ = 2Fe2+ + H4SiO4

CaSiO3(s) + 2H+ + H2O = Ca2+ + H4SiO4

Mg2+ + CO3
2- = MgCO3(s)

Ca2+ + CO3
2- = CaCO3(s)

Fe2+ + CO3
2- = FeCO3(s)



Pilot-Scale Injections into Basalts

Location of 1000 ton pilot-scale test by the

Big Sky Carbon Sequestration Partnership, 2013

Gislason and Oelkers, Science, 2014

www.or.is/en/projects/carbfix/

Calcite in a core retrieved from the site of the 2012 

CarbFix injection of CO2-rich water into basalt in Iceland.

80% of injected CO2 mineralized within 1 year.

Pilot-scale injections into basalts 

have been performed in 

Washington and in Iceland.

8
Matter et al, Science, 2016



Research Questions

• When and where to carbonate minerals form in fractured rocks?

• What volume of a mafic rock is available for sequestration?

• Will carbonate mineral precipitation impede or accelerate sequestration?
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Research Approach

Bench-Scale Experiments

• Relevant pressure, temperature, 

and brine composition

• Static (dead-end fractures)

• Flow (monitor variation)

• With/without confining pressure

CO2-rich water

dissolution/precipitation

flow properties

permeability, porosity

Fractured Basalts

• Natural and artificial rocks

• Varying composition and fracture 

structure

Characterization

• Pre- and post-reaction

• Ex situ and in situ techniques.  
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Basalt Materials
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Columbia River flood basalt

(olivine rich)

Colorado basalt

(serpentinized)

Grand Ronde basalt

(silica rich)

void



Basalt Core Experiments – Dead End Fractures
• Six 600 mL pressure vessels

• Ultrapure water

• 100 °C or 150 °C

• 100 bar CO2 in the headspace

• React up to 40 weeks, take core sample 

and liquid sample intermittently

• Straight groove pattern

• ~11 mm wide

• 90-100 µm depth

• Coat with epoxy

• Expose the top surface
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Flood Basalt 100°C, 100 bar 6 weeks
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Raman Shift (cm-1)
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Op image1161 post-reaction FB B11-2 2X left
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  4

  5
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  7

• Siderite (FeCO3) formed 0.5 

cm below the top.

• Precipitates are large enough 

to bridge the 100 µm fracture.

post-reaction

2mm

siderite

carbonate peak
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Serpentinized Basalt 100°C, 100 bar 6 weeks

 200  400  600  800  1000  1200 

Raman Shift (cm-1)

Op image1167 post-reaction SB C5-3

  281

  729

  1084

  508

• Carbonate clusters located on red 

areas, which may be pyroxenes. 

• The size of the clusters is ~200 um.

post-reactionpre-reaction

serpentine

iron 

oxides

2mm

carbonate

carbonate
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Spatial Distribution of Precipitates

• 100 µm step count

• Count if any precipitate is observed within square

• Resolution greater than 50 µm 500 µm

Carbonate precipitates on the milled 

surface of flood basalt after 12 weeks

Carbonate formation is spatially localized with a maximum around 2 cm. 
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Reaction in an Induced Fracture

16

150 °C, 100 bar for 3 months

Flood basalt, 1-inch core

Post-reaction

Precipitate

Pre-reaction

Precipitation within fracture:

• Did not fill fracture

• Bridged opening



In Situ 13C NMR Monitoring of Reaction

Hot air controls temperature

NMR 

Probe

High-Pressure Gas 

Manifold

13CO2

Bore of 

magnet

• Basalt is much less reactive than pure forsterite.

• Evidence for bicarbonate production after 106 days with basalt.

13C NMR static 

spin echo spectra
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Reaction of artificial rocks at at 100 °C and 100 bar

forsterite CO2(aq)

HCO3
-Magnesite

50 days

5 days

basalt: 15% forsterite, 

20% diopside, 65% labradorite

HCO3
-

CO2(aq)

106 days

33 days

1 days



Basalt Core Experiments – Flow-Through
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Experiment Conditions Initial pH

(CB/FB)-ES-1 45oC; ultrapure water 3.1

(CB/FB)-ES-2 100oC; ultrapure water 3.2

(CB/FB)-ES-3
100oC; 1.2 mM NaHCO3

and  13.8 mM NaCl
3.6



Basalt Core Experiments – Flow-Through
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Experimental Conditions

ES-1 45°C ultrapure water

ES-2 100°C ultrapure water

ES-3 100°C
1.2 mM NaHCO3

13.8 mM NaCl

Flood Basalt Cores

5 mL/hour flow

• After initial high release, steady-state effluent concentrations achieved. 

• Higher Mg and Ca at higher temperature and ionic strength.



Basalt Core Experiments – Flow-Through
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Experimental Conditions

ES-1 45°C ultrapure water

ES-2 100°C ultrapure water

ES-3 100°C
1.2 mM NaHCO3

13.8 mM NaCl

Flood Basalt Cores

5 mL/hour flow

• Effluent pH calculated based on CO2 solubility and charge balance.

• Solution has not become saturated with respect to any minerals.

• Siderite (FeCO3) is the mineral closest to saturation.



Basalt Core Experiments – Flow-Through
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• X-ray CT imaging clearly indicates an increase in fracture volume.

• Effluent elemental analysis suggests 0.014 cm3 increase from an 

initial fracture volume of approximately 0.023 cm3.

• Increase comes primarily from dissolution of olivine, pyroxene, 

and plagioclase.

X-ray Computed Tomography Evaluation of Fracture Volume Change



High Pressure NMR Hardware

22



High Pressure NMR Hardware
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CO2 (aq)

• Can detect dissolved CO2 circulating 

through the NMR probe.

• In Year 3 we will evaluate reactions of 

CO2-rich solutions with artificial basalts.

Test Conditions:  

• Pressure = 50 bar

• Flow Rate: 0.1 mL/min

• T= 25 °C



Accomplishments to Date

– Identity and spatial location of carbonate mineral 

formation in dead-end fractures have been determined.

– Quantification of the relative reactivity of two different 

basalts over a range of conditions.

– Development of a laboratory-scale experimental systems 

for evaluating CO2-rich fluid interactions with basalts.

• Flow-through fractured basalts held under confining pressure.

• 13C NMR hardware for tracking reaction progress in situ under 

both static and advective flow conditions.  
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Synergy Opportunities

– Basalt Sequestration Projects:  share data and materials with 

others studying carbon sequestration in basalts.

• Work with Grand Ronde Basalt facilitated by Todd Schaef (PNNL)

• Ryan Pollyea and Sally Benson project on CO2 transport in fractured basalts.

• Our “Sample Library of Natural and Artificial Basalts” is available on EDX.

– Other Sequestration Projects:  examine impacts of fracture 

microstructure on CO2 behavior in other reactive materials.

– Modeling:  generate a rich dataset that can be used to evaluate 

reactive transport and geomechanical models.

– Technique Sharing:  we have unique abilities (e.g., solid state 13C 

NMR) that can be brought to other groups.

25



Summary

– Key Findings

• Carbon mineralization in fractured basalts can result in mineral 

trapping on time-scales of years or less.

• Consistent results from batch and flow-through experiments.

• Spatially-localized siderite formation occurs in dead-end fractures.

– Lessons Learned

• Improved methods for creating induced fractures.

• New fracture morphology to simultaneously evaluate reactions in 

fractures with advective flow and in dead-end fractures.

– Future Plans

• Completion of the large set of batch experiments.

• Flow-through experiments with in situ CT imaging at NETL.

• Experiments using the flow-through NMR probe.

• Prepare data packages for use in reactive transport modeling.
26
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Gantt Chart

T ask Start  D ate End D ate

    Subtask 1.1: Update PM P 01/07/15 02/06/15

    Subtask 1.2: M onthly & Quarterly Reporting 10/01/14 09/30/17

    Subtask 1.3: M eetings

    Subtask 1.4: Reports and Deliverables

    Subtask 2.1.1: Natural materials 10/01/14 12/23/14

    Subtask 2.1.2: Synthetic materials 01/01/15 04/02/15

    Subtask 2.1.3: Fracturing and characterization 01/01/15 06/30/15

    Subtask 2.2: Sample Characterization 01/01/15 01/01/16

T ask 3.0: Stat ic Experiments

    Subtask 3.1.1: Screening in immersion 01/01/15 09/29/15

    Subtask 3.1.2: Systematic immersion expts 09/29/15 09/28/16

    Subtask 3.2.1: Confining pressure reactor test 04/01/15 10/01/15

    Subtask 3.2.2: Confining pres. systematic expts. 10/01/15 04/01/16

    Subtask 3.2.3: confining pressure uCT expt. 04/01/16 09/28/16

    Subtask 3.3.1: In situ NM R prelim experiments 04/01/15 10/01/15

    Subtask 3.3.2: In situ NM R syst. experiments 10/01/15 04/01/16

    Subtask 3.4: Data integration and modeling 04/01/16 09/28/16

T ask 4.0: C o re F lo o ding Experiments

    Subtask 4.1.1: Reactor assembly and testing 10/01/15 09/30/16

    Subtask 4.1.2: Experiments at UM 09/30/16 06/30/17

    Subtask 4.1.3: Flow-through with uCT 01/01/17 06/30/17

    Subtask 4.2.1: Flow-through NM R probe dev. 04/01/16 10/01/16

    Subtask 4.2.2: Flow-through NM R expts. 10/01/16

    Subtask 4.3: Data integration and modeling 01/01/17 01/01/18

T ask 1.0: P ro ject  M anagement & P lanning

T ask 2.0: P repare and C haracterize B asalt  Samples

Q1 Q2       Q3        Q4        Q1         Q2         Q3       Q4        Q1       Q2        Q3        Q4
|             FY 2015                       |                    FY 2016                |                    FY 2017         |

August 18, 2016
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