Impact of Microstructure on the Containment and Migration of CO₂ in Fractured Basalts Project Number DE-FE0023382

Daniel Giammar, Mark Conradi, Sophia Hayes, and Phil Skemer Washington University in St. Louis

> Brian Ellis University of Michigan

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 16-18, 2016

Presentation Outline

- Project Overview
- Carbon Sequestration in Fractured Basalts
- Research Approach
- Technical Status
 - Carbonate mineral formation in basalt fractures
 - Reactions of basalts with flowing CO₂-rich solutions
 - In situ solid-state ¹³C NMR tool
- Summary and Opportunities

Benefit to the Program

- Program Goals Addressed
 - Improve reservoir storage efficiency while ensuring containment effectiveness.
 - Support ability to predict CO_2 storage capacity in geologic formations within \pm 30 percent.
- Project Benefits
 - Generate datasets for evaluating the efficiency of carbon sequestration in fractured basalts.
 - Determine the extent to which mineral carbonation may either impede or enhance flow.
 - Develop the experimental infrastructure for evaluating CO₂ behavior in fractured materials.

Project Overview: Goals and Objectives

Overarching Project Objective: advance scientific and technical understanding of the impact of fracture microstructure on the flow and mineralization of CO₂ injected in fractured basalt.

Project Overview: Goals and Objectives

- Budget Period II. Evaluation of Static Conditions and Development of Flow-through Capabilities
 - Evaluate the effects of basalt composition and fracture properties on the extent and mechanisms of carbon sequestration in diffusionlimited zones.
 - Quantify the extent to which confining pressure controls the propagation of fractures in basalts upon reaction with CO₂.
 - Create data packages that can be used for model development.
 - Develop laboratory-scale equipment for NMR and CT of pressurized systems with advective flow.

Project Overview: Goals and Objectives

- Budget Period III. Evaluation of Fractured Basalts with Flow of CO₂-Rich Fluids
 - Examine the impacts of precipitation and fracture development on the permeability of fractured basalt to CO₂-rich fluids.
 - Estimate the storage capacity of fractured basalts as a function of mineral content and fracture structure, and quantify storage by different mechanisms.
 - Demonstrate the application of advanced NMR and CT tools to fractured basalts with flow.
 - Develop data packages that can be used for reactive transport model development.

Sequestration in Mafic Formations

Chemistry of Mineral Trapping $CO_{2(scf)} + H_2O = 2H^+ + CO_3^{2-}$ $Mg_2SiO_{4(s)} + 4H^+ = 2Mg^{2+} + H_4SiO_4$ $Fe_2SiO_{4(s)} + 4H^+ = 2Fe^{2+} + H_4SiO_4$ $CaSiO_{3(s)} + 2H^+ + H_2O = Ca^{2+} + H_4SiO_4$ $Mg^{2+} + CO_3^{2-} = MgCO_{3(s)}$ $Ca^{2+} + CO_3^{2-} = CaCO_{3(s)}$ $Fe^{2+} + CO_3^{2-} = FeCO_{3(s)}$

Carbonate precipitates on basalts after 854 days of reaction at 103 bar CO₂ and 100° C Schaef et al., *Int. J. Greenhouse Gas Cont.,* 2010

- Mafic (Fe- and Mg-rich) rocks are formations with high mineral trapping capacity.
- Continued fracturing of the rock may be promoted by temperature and volume changes from reactions.
- Also applicable to *ex situ* mineral carbonation in engineered reactors.

🐺 Washington University in St.Louis

Pilot-Scale Injections into Basalts

Pilot-scale injections into basalts have been performed in Washington and in Iceland.

Gislason and Oelkers, Science, 2014

Washington University in St.Louis

Location of 1000 ton pilot-scale test by the Big Sky Carbon Sequestration Partnership, 2013

Calcite in a core retrieved from the site of the 2012 CarbFix injection of CO_2 -rich water into basalt in Iceland. 80% of injected CO_2 mineralized within 1 year.

Matter et al, Science, 2016

8

www.or.is/en/projects/carbfix/

Research Questions

- When and where to carbonate minerals form in fractured rocks?
- What volume of a mafic rock is available for sequestration?
- Will carbonate mineral precipitation impede or accelerate sequestration?

🐺 Washington University in St.Louis

Research Approach

Fractured Basalts

- Natural and artificial rocks
- Varying composition and fracture structure

Bench-Scale Experiments

- Relevant pressure, temperature, and brine composition
- Static (dead-end fractures)
- Flow (monitor variation)
- With/without confining pressure

Characterization

- Pre- and post-reaction
- Ex situ and in situ techniques.

dissolution/precipitation

flow properties permeability, porosity

Washington University in St.Louis

Basalt Materials

Washington University in St. Louis

Basalt Core Experiments – Dead End Fractures

- Six 600 mL pressure vessels
- Ultrapure water •
- 100 °C or 150 °C
- 100 bar CO_2 in the headspace •
- React up to 40 weeks, take core sample • and liquid sample intermittently

320 mL water, 5 cores

256 mL water , 4 cores

Keep water to solid ratio a constant

- Straight groove pattern
- ~11 mm wide
- 90-100 µm depth
- Coat with epoxy
- Expose the top surface

Washington University in St.Louis

Flood Basalt 100°C, 100 bar 6 weeks

post-reaction

carbonate peak

- Siderite (FeCO₃) formed 0.5 cm below the top.
- Precipitates are large enough to bridge the 100 µm fracture.

🐺 Washington University in St.Louis

Serpentinized Basalt 100°C, 100 bar 6 weeks

post-reaction

pre-reaction

281 200

2mm

- Carbonate clusters located on red areas, which may be pyroxenes.
- The size of the clusters is ~200 um.

🐺 Washington University in St.Louis

Spatial Distribution of Precipitates

- 100 µm step count
- Count if any precipitate is observed within square
- Resolution greater than 50 µm

Carbonate precipitates on the milled surface of flood basalt after 12 weeks

Carbonate formation is spatially localized with a maximum around 2 cm.

Reaction in an Induced Fracture

🐺 Washington University in St.Louis

In Situ ¹³C NMR Monitoring of Reaction

- Basalt is much less reactive than pure forsterite.
- Evidence for bicarbonate production after 106 days with basalt.

🐺 Washington University in St.Louis

¹³C NMR static spin echo spectra

- After initial high release, steady-state effluent concentrations achieved.
- Higher Mg and Ca at higher temperature and ionic strength.

- Effluent pH calculated based on CO₂ solubility and charge balance.
- Solution has not become saturated with respect to any minerals.
- Siderite (FeCO₃) is the mineral closest to saturation.

X-ray Computed Tomography Evaluation of Fracture Volume Change

- X-ray CT imaging clearly indicates an increase in fracture volume.
- Effluent elemental analysis suggests 0.014 cm³ increase from an initial fracture volume of approximately 0.023 cm³.
- Increase comes primarily from dissolution of olivine, pyroxene, and plagioclase.

High Pressure NMR Hardware

High Pressure NMR Hardware

CO_{2 (aq)} 160 120 180 140 100 Chemical Shift (ppm)

Test Conditions:

- Pressure = 50 bar
- Flow Rate: 0.1 mL/min
- T= 25 °C

- Can detect dissolved CO₂ circulating through the NMR probe.
- In Year 3 we will evaluate reactions of CO₂-rich solutions with artificial basalts.

Accomplishments to Date

- Identity and spatial location of carbonate mineral formation in dead-end fractures have been determined.
- Quantification of the relative reactivity of two different basalts over a range of conditions.
- Development of a laboratory-scale experimental systems for evaluating CO₂-rich fluid interactions with basalts.
 - Flow-through fractured basalts held under confining pressure.
 - ¹³C NMR hardware for tracking reaction progress in situ under both static and advective flow conditions.

Synergy Opportunities

- Basalt Sequestration Projects: share data and materials with others studying carbon sequestration in basalts.
 - Work with Grand Ronde Basalt facilitated by Todd Schaef (PNNL)
 - Ryan Pollyea and Sally Benson project on CO₂ transport in fractured basalts.
 - Our "Sample Library of Natural and Artificial Basalts" is available on EDX.
- Other Sequestration Projects: examine impacts of fracture microstructure on CO_2 behavior in other reactive materials.
- Modeling: generate a rich dataset that can be used to evaluate reactive transport and geomechanical models.
- Technique Sharing: we have unique abilities (e.g., solid state ¹³C NMR) that can be brought to other groups.

Summary

- Key Findings
 - Carbon mineralization in fractured basalts can result in mineral trapping on time-scales of years or less.
 - Consistent results from batch and flow-through experiments.
 - Spatially-localized siderite formation occurs in dead-end fractures.
- Lessons Learned
 - Improved methods for creating induced fractures.
 - New fracture morphology to simultaneously evaluate reactions in fractures with advective flow and in dead-end fractures.

Future Plans

- Completion of the large set of batch experiments.
- Flow-through experiments with *in situ* CT imaging at NETL.
- Experiments using the flow-through NMR probe.
- Prepare data packages for use in reactive transport modeling.

St.Louis Washington University in St.Louis

Washington University in St. Louis

giammar@wustl.edu (314) 935-6849

http://pages.wustl.edu/fracturedbasalts

- Co-PI's: Mark Conradi, Brian Ellis (Michigan), Sophia Hayes, and Phil Skemer.
- Students and Postdocs: Jubilee Adeoye, Anne Menefee, Jinlei Cui, Erika Sesti, Rachel Wells, Wei Xiong, Yeunook Bae

Technical Support: Helene Couvy

Appendix

- Organization Chart
- Gantt Chart
- Bibliography

Organization Chart

Gantt Chart

Task	Start Data	End Data		1	FY 201	15			F	(2016			F	Y 2017	
Task 1.0: Project Management & Planning			-	Q1	Q2	Q3	Q4	<u>Q1</u>	Q2	<u>Q3</u>	Q4	+ Q1	Q2	+ Q3	+ Q4
Subtask 11 Indate PMP	01/07/15	02/06/15	-									Aug	ust '	18, 2	201
Subtask 12: Monthly & Quarterly Reporting	10/01/14	09/30/17	-												
Subtask 13: Meetings	10/ 0 1 11	00,00,1	-								•				
Subtask 14: Reports and Deliverables			-												
Task 2.0: Prepare and Characterize Basal	t Samples		-	-											
Subtask 2.11 Natural materials	10/01/14	12/23/14	-												
Subtask 2.12: Svothetic materials	01/01/15	04/02/15	-		·										
Subtask 2.13: Fracturing and characterization	01/01/15	06/30/15	-	-	-										
Subtask 2.2: Sample Characterization	01/01/15	01/01/16	-												
Task 3.0: Static Experiments			-												
Subtask 3.11: Screening in immersion	01/01/15	09/29/15	-		,										
Subtask 3.12: Systematic immersion expts	09/29/15	09/28/16	-	_								-			
Subtask 3.2.1: Confining pressure reactor test	04/01/15	10/01/15	-	_)									
Subtask 3.2.2: Confining pres. systematic expts.	10/01/15	04/01/16	-	_				,							
Subtask 3.2.3: confining pressure uCT expt.	04/01/16	09/28/16	-							,		-			
Subtask 3.3.1: In situ NMR prelim experiments	04/01/15	10/01/15	-)(
Subtask 3.3.2: In situ NMR syst. experiments	10/01/15	04/01/16	-												
Subtask 3.4: Data integration and modeling	04/01/16	09/28/16	-							,		-			
Fask 4.0: Core Flooding Experiments			-												
Subtask 4.1.1: Reactor assembly and testing	10/01/15	09/30/16	-												
Subtask 4.1.2: Experiments at UM	09/30/16	06/30/17	-												
Subtask 4.1.3: Flow-through with uCT	01/01/17	06/30/17	-												
Subtask 4.2.1 Flow-through NM R probe dev.	04/01/16	10/01/16													
Subtask 4.2.2: Flow-through NMR expts.	10/01/16		-												
Subtask 4.3: Data integration and modeling	01/01/17	01/01/18	1 -												

🐺 Washington University in St.Louis

Bibliography - Presentations

- Anne H. Menefee, Peiyuan Li, Daniel E. Giammar, and Brian R. Ellis, CO₂ storage in fractured basalt: Coupling experimental analyses with reactive transport modeling, Goldschmidt Conference, June 26 - July 1, 2016, Yokohama, Japan.
- Jubilee Adeoye, Anne H. Menefee, Wei Xiong, Rachel K. Wells, Philip A. Skemer, Daniel E. Giammar, and Brian R. Ellis, Reaction products and evolution of permeability during carbon sequestration in fractures of unaltered and serpentinized basalt, Goldschmidt Conference, June 26 – July 1, 2016, Yokohama, Japan.
- Wei Xiong, Rachel Wells, Philip Skemer, and Daniel Giammar, Carbonate mineral formation in fractured basalt, Carbon Capture, Utilization and Storage Conference, June 14-16, 2016, Tysons Corner, Virginia.
- Wei Xiong, Rachel Wells, Philip Skemer, and Daniel Giammar, Carbonate mineral formation in fractured basalt at geologic carbon sequestration related conditions, 251st American Chemical Society National Meeting, March 13-17, 2016, San Diego, California.
- Wells, R., Xiong, W., Bae, Y., Sesti, E., Skemer, P., Giammar, D., Conradi, M., Ellis, B. and S. Hayes, Dissolution-precipitation ٠ reactions and permeability evolution from reactions of CO₂-rich aqueous solutions with fractured basalt, American Geophysical Union Fall Meeting, September 12-16, 2015, San Francisco, California.
- Hayes, S. NMR² meeting, Albuquerque, NM. Oct. 2015 "NMR and in the Compton Basement—a Presentation in Honor of Prof. Mark • S. Conradi" (invited talk).
- Xiong, W., Wells, R., Skemer, P., and D. Giammar, Carbonate mineral formation in fractured basalt at geologic carbon sequestration related conditions, Mid-America Environmental Engineering Conference, October 24, 2015, Columbia, Missouri.
- Giammar, D., Conradi, M., Hayes, S., Skemer, P., and Ellis, B. Impact of microstructure on the containment and migration of CO2 in fractured basalts, Carbon Storage R&D project Review Meeting, August 18-20, 2015, Pittsburgh, Pennsylvania.
- Hayes, S.E., In situ NMR reveals conversion of ¹³CO2 to metal carbonates and pH monitoring for geosequestration studies, American ٠ Chemical Society Fall 2015 Meeting: Boston, MA, August 16-20. (invited)
- Hayes, S.E., Euromar, Prague, Czechoslovakia, July 2015 "Materials for CO2 Capture and Sequestration Studied by ¹³C NMR" ٠ (invited talk and contributed poster)
- Ellis, B.R.; Fan, W.; Tang, M.; Hayes, K.F.; Xiong, W.; Giammar, D.E.; Skemer, P., Alteration of fracture geometries during flow of acidic fluids: Implications for subsurface energy technologies. American Chemical Society Fall 2015 Meeting: Boston, MA, August 16-20. (invited)
- Giammar, D., Xiong, W., Hayes, S., Skemer, P., Conradi, M., Ellis, B., Moore, J., and D. Crandall, (2015) Characterization of mineral trapping within fractured basalts, 14th Annual Carbon Capture Utilization and Storage Conference, April 28 – May 1, 2015, Pittsburgh, Pennsylvania.
- Xiong, W. and D. Giammar, Carbon sequestration in fractured basalt, Gordon Research Conference on Carbon Capture, Utilization • and Storage, May 31 – June 5, 2015, Easton, Massachusetts.

Vashington University in St.Louis

Bibliography - Publications

• Cui, J., Sesti, E.L, Moore, J.K., Giammar, D., and S.E Hayes, Evidence from ²⁹Si solidstate NMR of dissolution reactions of forsterite, accepted in *Environmental Engineering Science* in June 2016.

